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THE RUNGE-KUTTA EQUATIONS BY QUADRATURE METHODS 

SUMMARY 

This report  gives a basically new approach to  
the formulation of the classic Runge-Kutta process.  
Dependence on the tedious Taylor expansions i s  ob- 
viated by a matrix equation which defines the Runge- 
Kutta equations for  any order ;  furthermore, the ele- 
ments of these matrices a r e  obtained quite simply. 
The method of quadratures i s  used to determine the 
conditions on the parameters which characterize the 
process since these parameters determine the order  
of accuracy of these functions. 

INTRODUCTION 

It i s  the usual practice in determining the 
parameters in equation (2 )  to  expand these func- 
tions in Taylor se r ies  about the initial point (XO, yo) 
so that, to a given order,  equation (3)  i s  identical 
with the Taylor expansion 

Y(xo+h) =yo+hf(xo,Yo) +$ * ( X O , Y O )  

h3 I1 +T! f (X0,YO) +. . .  

which i s  the true solution of equation (1) .  Here the 
superscripts denote derivatives with respect to 
x, which in te rms  of the partial derivatives increases 
in complexity a s  the order  increases.  On equating 
the respective coefficients of the partial derivative 
in these expansions to a given order in h, we a r e  led 
to the system of equations which determine the param- 
e t e r s  in equation ( 2 ) .  

We briefly indicate the Runge-Kutta process 
which leads to an algebraic system of equations whose 
solutions give the parameters involved. 

When the order  of the Runge-Kutta process is 
reasonably high, the expansions in t e rms  of their 
respective partial derivatives become somewhat 
formidable. Consider the initial value problem 

Y' = f ( x ,  Y) Y(X0) =yo. (1) With the method we a r e  about to introduce, 
we shall obviate the need for these tedious Taylor 
expansions in order to obtain the system of equations We define the sequence of N quantities 

w_hich defines the parameters in equation (2) ; 
k, = hf(x0, Yo) we will have instead a procedure which i s  almost 
kz = hf(xo + LY zh, YO + Pziki) automatic and extendible to any order.  

N=l  

and the linear form 
N 

(3)  

THE QUADRATURE METHOD 

Consider the quadrature formula' 

b N 

a i =  1 
f (x )  dx-  w i  f(xi)  

' See Kopal's [ l ]  expansion for the fonrth-order 
Runge-Kutta formulation; the magnitude of the 
task for higher orders  becomes evident. The work 
of Butcher [2-51 and Shanks [6-71 are generali- 
zations based on the approach by Taylor se r ies  
expansion. 

such that the expansion of this in powers of h agrees  
with the exact solution of equation (1) to a prescribed 
number of te rms .  

We assume a weight factor of unity in equation (5) ; 
obviously the following analysis could be extended to 
include other weight factors. 



which approximates the integral by a l inear  combi- 
nation of the values of the function fo r  the a rb i t ra ry  

Combining equations (7 )  and ( 8) , 

zeros  x.( i = 1, 2, . . . , N) . We say that equation N-1 
Y(xo+h)- ~ ( ~ 0 1  h w i + l  f ( 4 ,  y(xi) ) (12) (5) has  the precision m if i t  i s  exact for the succes- 

sive Dowers f (x )  = x r  ( r  = 0, 1, . . . , m) ( and, 
i = O  

. .  
therefore, a l so  for all polynomials of degree m) . 
This is equivalent to the m+l equations 

is a quadrature approximation with the degree of 
precision m if equation (10) holds. 

Suppose now that equation (1) be reformulat- 
ed as 

in which form it  includes the initial conditions. 
us  replace the right member of equation ( 7 )  by the 
approximating quadrature sum 

Let 

We continue by making another quadrature 
approximation, this time for y( x.) in equation ( 12) 

For any te rm f(x., y.) in (12)  we can write 
1 1  

A s  in equation ( 7 ) ,  we can replace equation 
(13) by the integral form 

x . = x ~  +CY h 
i +l s ’ f (x ,  y(x)  ) dx 

XO 

and finally, we can replace the integral by the 
approximate quadrature sum 

where we have se t  i - 1  

x. = xg + CY i + i  h’ i = l , 2 , 3  , . . . ,  N-1 (9 )  j = O  
p i + i ,  j + i  f (x.3 j Y(X.) j 1 

y. = Y(x.) = ~ ( X O  +CY h ) ,  i +l 

then for a degree of precision m 

where the p ‘s  correspond to the weight coefficients 
w in equation ( 8) . For a degree of precision m 
equation (10) must be satisfied with the p ‘ s  replac- 
ing the w ’ s  and u (a. ) replacing u in equation 

(11) where 
r i+ l  

where, as in equation (6) 

r = 0 ,  1, ..., m. 

Summarizing the above, we can replace y( x.) 
in equation (12) with the requisite precision, if we’ 

where 
The m+l l inear equations ( l o ) ,  as we shall 

see,  will give us some of the equations in the Runge- 
Kutta process. 

h(P i + i ,  1 +p  i + i ,  2 + - +P i + i ,  i )  = uO(a! i+i)  

2 



i + l , i  1-1 x. ) h((B i + i , i x o  + P  i + l ,  2 X ' + " ' + P  

= ui (o! i + i )  

Similarly, we can put equation (11) in the 
matrix form 

3 

so that we can replace equation ( 19) by 

= u m  ((yi+i) 

i = 1 , 2 ,  ..., N - I  

must be satisfied to obtain the required precision m ;  
where, as we shall see, m = p - I with p the order  
of the Runge-Kutta process. 

By expanding equation ( 16) consecutively for  
i = I ,  2, . . . and by using the approximations for  
y(  x.) in  each successive expansion, we will finally 

obtain in place of equation ( 16) 

1. 0 0 ... 0. 
1 I CY2 CY$ . . . CY? 

I CY3CY3 ... 051 

i - I  

j = O  1 C Y N C Y & .  . . CYB j 

When this is substituted into equation (12 ) ,  
the functions take the form of the Runge-Kutta ex- 
pressions defined by equation ( 2 )  and the numerical 
solution equation ( 3 )  . 

THE RUNGE-KUTTA EQUATIONS 

j = O , l ,  ..., m 

If we equate coefficients in equation (22),  
we get, for any fixed j ,  some, and finally ( fo r  j = m) , 
all of the equations 

It will be convenient to put some of the pre- 
vious equations into a more usable form. 
equation (IO) we can write 

Thus, for  

I 0 0 ... 0, 
I CYzCY; ... a.2 
1 CY3CY: ... ( y g  

m = u  j = O , l ,  ..., m . ( 1 9 )  
j' 

m 
C Y N " & . . .  CY N Using ( 9) and expanding by the binomial 

theorem, we have 
=[I  - 1 1  -. . .  -1-3 

2 3 (m+l)  

3 



which replace equation ( 10) and which constitute a 
Part  of the Runge-Kutta equations. 

the latter being the f i r s t  equation in equations (17) . 
The equations ( 2 7 )  are always assumed in the Runge- 
Kutta process  as basic relations between the param- 
eters in equations ( 2 )  . We can treat 

h p  i+i , i ' i+i ,Z - 0 .  

17) similarly and write equation ( 

We might a lso require that the equations 

P i + l , 2 f f 2 + P i + l , 3 f f 3 + . . .  = -CY. 1 2  
2 l+l 

i = 2 ,  3, ..., N - 1 

hold. These and s imilar  equations obtained from 
equation (26 ) ,  however, are not specifically assumed 
here  when deriving the Runge-Kutta equations but 
are sometimes invoked in reducing the number of 
Runge-Kutta equations ( for  p > 4) when solving for  the 
parameters .  

and as in (21) for  u., we can wri te  for equation ( 15) 
J 

We now come to an important step in deriving 
the classical Runge-Kutta equations. We form the 
following weighted expressions using equations ( 17) 
(but excluding the f i r s t  equation, o r  equations (27) ) : 

Substituting this into'equation (24)  and equat- 
ing coefficients fo r  all  fixed j's, we can summarize 
our  resul t  by replacing equation (17) with or, using equations ( 2 6 )  

P i + l ,  i] 

2 11 C Y .  C Y .  ... C Y .  
1 1  

n' 
3,  N I r  i 

. . .  
CY: . . .  ICY: i = 2,  3, . , , ,  (N-1)  

j = l ,  2 ,  ..., m 

and 

where 
i = 1, 2,  . . . , ( N - l ) ,  

1 " N) s12,N = ( W 2 W 3  ... 
~~ - 

'For the solution of equation ( 2 3 ) ,  with w . in t e r m s  
of the Is, see [ 81 and [ 91. Sl1 = ( W 3 W 4  ... W,) . 

3, N 

4 



If we now set we should be able to replace the row vectors Q ' 
and s2 * in equation (30) by the (m- i )  -rowed 

matrices in equation ( 3 4 ) .  This gives 

3, N 

2, N 

j = i, 2, . . ., m-i  
(32) 

then matrix equation (30) becomes 

9' 
3 ,  N 

where we have used equation (23)  to  evaluate the 
matrix product in the right member of equation (30 )  
except in the last  column where i t  was not possible 
and which we have suppressed in both sides of (33 )  
since they yield higher order  t e rms  and a r e  not rel- 
evant to our  degree of precision. 

Equation (33)  gives us  another set  of Runge- 
Kutta equations. If we return to  equations ( 29) 
and the subsequent analysis, i t  should be apparent 
that we should be able to  find other relevant Runge- 
Kutta equations if we replaced w in (29)  by i + i  
w .  CY with n = i ,  2, . . ., m-2. 

l+i i + i  

Therefore, if we write 

(m-1, 
' 2 , N -  

* m-2 ' m-2 
wzCY2 ... " C Y N  

- 
N ... w w 3  

w3CY3 ... W N C Y N  

(34)  

- I i i i (3 i (3.. m-i (a) 

- a(&)  - ... 
(35 )  

where the substitution of C for  the matrix in equation 
(33)  i s  evident. Thus, we have extended the number 
of Runge-Kutta equations by equation (35)  ; but others, 
as we shall see,  a r e  possible. It might be appropri- 

( m-i) and other simi- ate to re fer  to the elements of Q 3, N 
l a r  elements which we will form as generalized Runge- 
Kutta weights. 

It should be apparent that if we could find all 
the other pertinent s e t s  of generalized Runge-Kutta 
weights, we should be able to find all the relevant 
Runge-Kutta equations. The procedure for  doing this 
i s  reasonably simple. A s  we obtain new Runge-Kutta 
equations we must examine each for new generalized 
Runge-Kutta weights which in turn may generate new 
equations. The simplest way to recognize these are 

as the coefficients of C Y .  1 '  for appropriate integral 

values of n, of the already known Runge-Kutta equa- 
tions. The two specific examples -- for  orders  four 
and five -- which will be given should sufficiently 
illustrate the procedure, 

n 

We might finally summarize our results. The 
Runge-Kutta equations for N evaluations in equations 
( 2 ) ,  with N appropriately chosen, and o rde r  p = m - i  
are given by equations ( 2 3 ) ,  (27) , (35)  and all addi- 
tional Runge-Kutta generalized weight coefficients 

that can be found to  replace Cl 3, ' N in equation (30 )  . 
This will result  in an appropriate extension of equa- 
tion ( 3 5 ) ,  wherein the matrix which contains the 
Runge-Kutta weight coefficients will, f o r  convenience, 
by referred to as 5 2 .  

It  might be noted that we a l so  use equation (28) .  

Then, because of equations ( 3 2 ) ,  

( i  = 2 , 3 ,  . . . , (N-1) ) ; and, as may be seen from 
equation (33)  , the number of Runge-Kutta equations is 
reduced. 

= 1 C Y Z  2 l + i  

5 



FOURTH-ORDER RUNGE- K U l l A  EQUATIONS 

We will illustrate the preceding work, using 
our quadrature method, fo r  the particular fourth- 
order  Runge-Kutta process and show how to derive 
the equations which define the parameters a ! .  and 

P ij. 

We f i r s t  replace the right member of equa- 
tion (7) by a quadrature sum involving the four4 
a rb i t ra ry  zeros x. ( i  = 0, 1, 2, 3 ) ,  so that cor res -  

ponding to equation (12) ,  we have 

(36) 
where x. and yi are defined by equation (9) . We will 
requirela degree of precision of three, not four, in 
equations (10) because of the factor h in (36).  

We will now replace the y . ( i  = 1, 2, 3) in 

(36) to  the degree of precision three in accordance 
with the analysis previously given. Thus, the f i r s t  
t e rm in equation (36) which will be affected by quad- 
ra tures  for  y(x.) is f(xl ,  yl) ,  which i s  to be replaced 
by 

and after approximating the integral with the quad- 
.rature equation ( 16) ,  and using k1 defined in equa- 
tions (2)  , 
yi - Yo = (h  P 21) f(Xo9 Yo) = P 21 kl (39) 

where, according to equations (17), the weight co- 
efficient (hp 21) must satisfy the following four con- 
ditions i f  the quadrature is to have a degree of pre- 
cision three 

4 
We are anticipating the fact that fo r  the fourth- 
order  process only four a rb i t ra ry  zeros  are nec- 
essary.  
number of function evaluations, N, only holds for  
orders  up to  the fourth. Fo r  higher orders  this 
relation is complex; Butcher [ 51 deals with this 
problem. 

This equality between the order  and the 

r 
( 40) (hp21) X, = u r  ( ( ~ 2 )  r = O ,  1, 2, 3 

where u (a! 2) is given by equation (15) . r 

In s imi la r  fashion we replace yz and y3 in 
equation (36) by making the respective quadratures 
indicated by equation (16) 

y2 - YO = (h  P 3;) f(x0, YO) + ( h  P32)  f (Xi, Yi) (41) 

where ( h  p . .) may again be interpreted as the weight 

coefficients in the quadratures. 
1.l 

Equation (39),  which defines y1 with the 
requisite precision, can be used to replace y1 in 
equation (41) . Then 

YZ - YO P 31 hf ( x O *  YO) + P 3 2  hf Y O + P Z i  kl) 

so that, with kl and kz defined as in equations (2) , 

YZ YO + P 31 kl +P 32 kZ . ( 43) 

In a s imi la r  fashion, by using both equations 
(39) and (43) ,  we can replace equation (42) with 

where the k 's  are defined by equations (2) . This 
procedure, as will be observed, replaces y. in 

f(xi, yi) with the same degree of precision as the 

degree of precision in the quadrature (36) . 
Again, in order  that the required degree of 

precision be at least of order  three,  the weights in 
equations ( 41) and (42) must according to ( 17) satisfy, 
respectively, the equations 

where u ( a! 

and x. by equations ( 9) . 
and ur( a! 4) are given by equation (15) r 

6 



Our problem i s  to satisfy the conditions (40) , 
(45),  and (46),  so that the repeated quatratures we 
have made represent the Runge-Kutta process t o  the 
necessary degree of precision. Rather than hse  the 
general results we have derived, we will i l lustrate 
our procedure in some detail. 

CONDITIONS FOR A FOURTH-ORDER 
RUNGE- K U l l A  PROCESS 

We have seen that in order  that the degree of 
precision represented by the bracketed t e rm in equa- 
tion (36) be at least  of order  three in h, the four con- 
ditions given by equations (10) must hold. If,we re- 
place xi by equation ( 9) and ui by equation ( 11) , equa- 

tions (10) gives 

w1 +w2 +w3 +w4 = 1 

1 
wzaz + w3a3 + w4a4 = - 2 

1 
3 (47) wza: + w 3 4  + w 4 4  = - 

which may have been anticipated by using equation 
(23) w i t h m - 3 .  

Four more equations are necessary for  the 
Runge-Kutta process which we will now derive, but 
which for  convenience we anticipate here. These are:  

We now return to  the conditions ( 40), (45) and 
(46) , which we shall satisfy in the following manner. 
The equations arising from uo ( a . ) ( i  = 2, 3, 4) can 

be satisfied identically by using equation (15) , so that 

f f 2 =  P a 1  

f f 3 = P 3 1 + P 3 2  

f f 4 =  P 4 i + P 4 2 + P 4 3  . ( 52) 

These are additional relations which hold for  the 
fourth-order Runge-Kutta process and may have been 
found directly from equations (27) . 

Let us now consider the expressions formed 
bY 

w2u. ( a z )  +w3ui (a3 )  +w4ui  (~2 .41 ,  i = 1 , 2 , 3 .  (53) 

A s  an  example, when i = 2, this will give, if 
we use equation ( 15), 

(X ih )  [ W z Q I z + w 3 a 3 + w i a 4 1  
( 54) 

+ x o h 2  [ W ~ ( Y ~ + W ~ ( Y \ + W ~ C V ~ ]  

+1 /3h3  [ w ~ c Y ~ + w ~ c Y ~ + w ~ ( Y ~ ~  

and by equations [47] this becomes 

- 1 ( x i  h) + -XO 1 h2 + 4 1 1  ( 3h3)  
2 3 (55) 

which is free from the weights w . and parameters a 
and p... i 

1J 

so that if we equate the coefficients of equations (55) 
and (56) ,  we obtain three equations for the fourth- 
order  Runge-Kutta formulation -- equations (48) and 
(49) , and one which i s  a repetition of an  equation in 
equations (47) . No new results will be derived if we 
treat similarly (53) when i = 1, 3. 

It will be observed that if we replace w . in  

equations ( 53) by w .a 

corresponding to equation (55) will again contain t e rms  
which are free of parameters;  in fact, we are led to 
the new equation (50) . 
process we have described and which leads to  the con- 
cept of the generalized Runge-Kutta weight coefficients; 
and, as we have pointed out, if we can find all sets of 
these coefficients which are relevant to a particular 
o rde r  of the Runge-Kutta process, we will produce 
all  the Runge- Kutta equations . We continue with our 
coefficients by seeking contributions to these from 
each new equation as it is generated. These are, in 
our present case,  the coefficients of a. and a in  

equations (48) and (49) which contribute a new set of 

the resulting expression 
1 i’ 

This is an  extension of the 

i 

7 



generalized Runge-Kutta weight coefficients which 
generate the new equation (51 )  '. 

We can summarize these resul ts  by the ex- 
tension of the matrix equation (35 )  which was derived 
by a generalization of the elementary concepts pre- 
sented here  fo r  the fourth-order case. This gives 

"3 "4 

"3ff3 "4C 

0 4 P 4 3  0 

where the c.(l)  ( i  = 3, 4, 5, 6) are defined by equa- 

tions (32 )  and where the new quantities introduced 
are given by 

(59 )  

The Runge-Kutta equations fo r  the fifth order  
will then be given by extending equation (35 )  : 

which represents the results given by equations (48 )  
through (51).  

THE FIFTH-ORDER RUNGE-KUTTA EQUATIONS 

Several aspects on formulating the matrix 0, 
which contains all the generalized Runge-Kutta weight 
coefficients, can best be illustrated by considering 
the fifth-order case,  which required a t  least  s ix  eval- 
uations for  a solution [4 ,  61.  

We star t  with the applicable Runge-Kutta equa- 
tions given by equations (23 )  and (27 )  with N = 6 and 
m = 4. We then enumerate the generalized Runge- 
Kutta weight coefficients; starting initially with the 
three rows given by equations (34 )  and followed by 
the subsequent extensions a s  new Runge-Kutta equa- 
tions are derived. This gives 

"I3 1 "4 "5 

1 ( y d % 4 3 + Y 5  (0 ) P 5 3 )  Y5 ( 0 )  P54 0 

Other generalized Runge-Kutta weight coefficients 
which may be obtained f rom equations (48 )  through 
(51 )  may be ignored, if we keep in mind that in the 
Runge-Kutta equations we seek no t e rm which i s  a 
product of the a ' s  and p ' s  may have the sum of i ts  
powers exceed m = p - I. 

0 C= 

i (i) 
2 ( $ 1  

f (i) i ($) 
i ($) - 

(60) 

where C i s  a ( 4  x 3)  matrix defined in equation (33 )  , 
and where the numerical values of the elements in the 
right hand matrix in equation (60) may be readily 
verified partly by equation (23 )  and partly by equation 
(30 )  ; and the other by using the new Runge-Kutta 
equations for  the fifth order  as they a r e  generated. 
The dashes in this matrix indicate that there a r e  no 
results relevant to our problem. 'I 

If two of these equations (those obtained from 
the fifth and sixth row of 0 in equation (58 )  andmark- 
ed with as te r i sks  in equation ( 6 0 )  ) a r e  added, instead 

The f i rs t  t h r e e w s  may be directly obtained from 
equation ( 3 5 ) .  

'I Except, perhaps, for  higher order  t e rms  which may 
be of interest  in evaluating e r r o r  te rms .  

8 



of being satisfied simultaneously, we get the set  of 
Runge-Kutta equations for  the fifth order  customarily 
given in the literature. * 

THE GENERALIZED RUNGE-KUTTA 
WEIGHT MATRIX  

We shall now indicate a device whereby we 
can generate the matrix of equation [ 581 quite easily. 
The convenience of this device would be realized i f  
we attempted to  generate C? from the basic definition 
of the generalized Runge-Kutta weights previously 
given. 
fifth order  the latter process i s  extremely tedious; 
furthermore, the evaluation of the numerical matrix 
[60] i s  laborious and there is ,  additionally, the pos- 
sibility of overlooking some rows of if the order i s  
high. 

Even for the relatively simple case of the 

The procedure we will now introduce i s  quite 
simple and we will illustrate it for equation (58) . 
We s t a r t  with the first  three rows a s  required by 
equations (34) with m = 4. We next replace w . 
( i  = 3, 4, 5, 6)  consecutively by i ts  corresponding 

t e rms  y . ( ' ) ,  yi( ' ) ,  yi( ' ) ,  . . . ( i =  3, 4, 5, 6) where 

the latter t e rms  a r e  defined by (59) . This contri- 
butes the fourth and sixth rows to the O-matrix a s  

we reject  y."), yi('), . . . since the total degree of 

these t e rms  (the sum of the exponents of the a ' s  and 
p ' s )  would be too high. 
replacing w. a s  before, in the w .  a .  and w. a2 rows 

of equation (58) -- retaining only those t e rms  within 
the limitations imposed on the total degree of the r e -  

sulting elements. Thus, we reject  y (') a? whose 

total degree i s  three and retain only the elements 

yi(0) ai in the fifth row. 

W e  now repeat this procedure 

1 '  1 1  1 1  

i i  

We continue to make analogous substitutions in 
the elements of the new rows generated. 

write p(') ( w  i) for 3") to show, as we may see by 

equation (591, that y i o )  explicity involves w . ( the 

same is t rue  for  y"), yi('), . . . though we wifl not 

Let u s  

The Runge-Kutta equations obtained here  may be 
checked with the equations given by Luther and 
Konen [ 101 who use a slightly different notation. 

The total degree (see footnote 5) of the fifth-order 
generalized Runge-Kutta weight coefficients in 
equations (58) cannot exceed m - 2. This i s  be- 
cause its products with c.(1) (whose total degree 

is two) will give the maximum total degree permis- 
sible for the fifth-order case. 

need these in this case) ; and le t  us replace w 

we did before, by y,") , r,"), . . . and designate these 

as 
i' 

\ I  

amole 

where' y6(0)= 0 in the present case. These again, as 

we will show, a r e  generalized Runge-Kutta weight 
coefficients. In this case, after rejecting those ele- 
ments whose degrees a r e  too high, we retain only 

(') (yj(')) the elements of the eighth row in (58) .  Yi 

One further addition to our catalogue of t e rms  
must be made. We should, generally, add to our 

. . .  matrix such rows a s  w.c.") a n ,  w.c ( 2 )  a: 
1 1  i i  I 

( i = 3 ,  4, . . .  N; n =  0, 1, ... , ( m  - 4 )  ) .  I n o u r  

specific case only w.c.(') ( the seventh row in equation 

158) ) i s  tenable. These elements, too, may be 
subjected to the substitutions indicated above to give 

1 1  

us te rms  like y.( ' )ci( ' ) ,  y i (0)ci( l )  a i ,  etc. 

We will now justify the rules we have just 
given for constructing the a -mat r ix  and show that the 
entities we obtain a r e  generalized Runge-Kutta weights. 
Since the generalization to any order  would be obvious 
in what follows, we will, for the sake of brevity, con- 
tinue with the demonstration for the fifth-order case 
with six evaluations. 

Using equation (30), we can write 

... 
w3a3 ... e. W Q a :  ... 

P 4 3  0 0 

P53 P 5 4 0  

- 

and using equation ( 59) on the left side, we get 

9 



where the right member of equation ( 6 1 )  has been 
evaluated by equation ( 2 3 ) .  From equation ( 6 2 )  it 

may be seen that since the te rms  y . (n )  cy! (n=O, 1 , 2 ;  

j = 0, 1 , 2 , 3 )  a r e  coefficients of cyq in Runge-Kutta 
equations, they fulfill the basic definition of general- 
ized Runge-Kutta weight coefficients. '' 

(0) If now in equation ( 6 1 )  we replace w .  by y .  
1 1  

we get '' 

1 4  
4 cy6 

indefinitely to produce coefficients for  any other 
order  Runge-Kutta process. 

If in taking the product in the left member of 
equation ( 6 1 )  we use equations ( 3 2 ) ,  we get, instead 
of equation ( 6 2 )  , the matrix equation 

which i s  equation (35)  with i ts  right member unex- 
panded. If we expand the left member of equation 

( 6 4 ) ,  we see  that t e rms  like w.  c.(") a 1 a r e  also 

generalized Runge-Kutta weight coefficients. Evi- 

dently then, we can replace w .  in Y . ' ~ )  w 

of this type also. l2 

1 1  i 

by t e rms  
I 1  i 

If in equation (64)  we replace w .  by y ( O )  in 

the te rms  Rg, and 03, defined by equations ( 3 4 ) ,  
the right member can be evaluated by using equations 
(63)  . Thus, in the Runge-Kutta weights of the type 

w . c . ( ~ ) ( Y ?  we may replace the w .  by y.") ; and by an 

extension of the preceding arguments w .  may a lso  be 

i i  

I 1  1 1 1  

replaced by y .  ( 1 )  , yi ( 2 )  , . . . , etc. , producing t e rms  

of the type y . (n )  c . ( ~ )  01 
1 1  i '  

It should be recalled that equation (64)  (or i ts  
general form for higher orders )  i s  our basic matrix 
equation, which still gives valid Runge-Kutta equa- 
tions with any generalized weights which may replace 
the elementary weights in n;,6 and . We should 
keep this in mind below as we evaluate the matrix 
product C? C for the sixth order.  

where the last  matrix product was evaluated by using 
equation ( 6 2 ) .  Thus, we have demonstrated that en- 

tities of the type yi(n)(yj(oJ ) cyi (where m may be 

0) a r e  a l so  generalized Runge-Kutta weight coeffi- 
cients. These simpler cases  may be compounded 

m 

THE S IXTH-ORDER RUNGE-KUllA EQUATIONS 

(n)  10 
Note from equations (59) that the missing 'y6 

( n =  0,1,2) in (62)  are zero. 

In Table I we have enumerated the generalized 
Runge-Kutta weight coefficients for the sixth-order 
process. We show only the first  element of each row 
since the other elements in the row a r e  simply obtained 
by advancing the subscripts to N. The R-matrix can, 
of course, be easily expanded from the first  four rows 
in Table I by the simple rules we have just  given. It 
will be observed that if we limit ourselves to weight 
coefficients whose total degree i s  less  than three we 

l2 See, fo r  instance, y3( ' )  [mici(')l in Table I. 
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will obtain the Q-matrix in equation (58) for the fifth 
order.  l3 It is evident, then, that for any higher order  
Runge-Kutta process we need merely extend the l is t  
in Table I. 

In the last  four columns we give the numerical 
values corresponding to  the matrix product Q C where 
these are pertinent;14 and we shall next consider how 
these a r e  evaluated. 

THE EVALUATION OF THE NUMER I CAL 
MATRIX 

The numerical values fo r  the f i r s t  four rows 
in Table I are given by equation (35)  ; and we will 
illustrate how, by using previously derived results,  
we can determine the other numerical values shown 
in this table. Fo r  the sake of brevity we will limit 
ourselves only to those results just requisite to  the 
sixth-order case with N evaluations. The extension 
to higher o rde r s  is amply evident. 

From what has already been established, we 
can write the matrix equation, valid for  n = 0,  I, 2: 

4 "N 
- 

- - I  I' [I' '-3 5 [I"] 5 (6+n) 
2 4 (5+n) 

- I  (65)  

where we have evaluated the right side by using 
equation (62)  or ( 6 3 ) .  
sults, have been used in the appropriate place in 
Table I. 

These, and subsequent re -  

'1 2 2 "2 

1 . 2  
2 "N 

; ( 2 )  "3 N 

b we again get the numerical results by using equation 
( 6 3 ) .  

Similarly, we can write 

L A  

and if we replace w .  by 7.") in equation ( 6 1 ) ,  and 

use equation ( 59) ,  we get 
1 1  

I 1  



TABLE I. THE GENEAALIZED RUNGE-KUTTA WEIGHT COEFFICIENTS FOR THE SIXTH ORDER 

Total 
Degree 

0 

.. 
First 

Coefficient * 

1.1. 
2 3  

i1. 
3 4  

11. 
4 5  

1.1 1.i 
2 4  3 5  

1.1. 
4 6  

1 

i 1 .  
2 5  

1.1. 
3 6  

2 

3 1.1. 
2 6  
L i i  i i 1 .  
2 3 4  3 4 5  

i i i  
4 5 6  
- 

1 

2 

3 

2 

3 

3 i i 1 .  
2 3 6  

1.1.1.1. - 
2 4 5 6  
i 1 . 1 . 1 .  - 
2 3 4 6  

i i 1 . 1 . i -  
2 3 4 5 6  

- .-- .- 
96 Only the f i r s t  weight coefficient (element) of each row of the R -matrix i s  shown; 

the other elements in the row a r e  simply obtained by advancing the subscripts to N .  
In the las t  four columns a r e  given the values of Q C .  

** These two are easily seen to be repetitions of each other. 
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where the last  evaluation was. made by using equation 
(62)  ; so that, combining the resul ts  in equations 
(67)  and { 6 8 ) ,  we get 

I .  

2. 

3. 

4. 

5. 

6 .  

7. 

8. 

9. 

10. 
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